Using Formal Grammar and Genetic Operators
to Evolve Malware

Sadia Noreen!, Shafaq Murtaza!, M. Zubair Shafiq?, Muddassar Farooq?

! FAST National University, Islamabad, Pakistan
2 nexGIN RC, FAST National University, Islamabad, Pakistan

{sadia.noreen,shafaq.murtaza}@nu.edu.pk,{zubair.shafiq,muddassar.farooq} @nexginrc.org

Abstract. In this paper, we leverage the concepts of formal grammar
and genetic operators to evolve malware. As a case study, we take COM
infectors and design their formal grammar with production rules in the
BNF form. The chromosome (abstract representation) of an infector con-
sists of genes (production rules). The code generator uses these produc-
tion rules to derive the source code. The standard genetic operators —
crossover and mutation — are applied to evolve population. The results of
our experiments show that the evolved population contains a significant
proportion of valid COM infectors. Moreover, approximately 7% of the
evolved malware evade detection by COTS anti-virus software.

1 Evolutionary Malware Engine: an Empirical Study

Malware writers have developed malware engines which create different variants
of a given malware — mostly by applying packing techniques. The developed
variants essentially have the same functionality and semantics. In contrast, our
methodology targets to create “new” malware. It consists of three phases: (1)
design a formal grammar for malware and use it to create an abstract repre-
sentation, (2) use standard genetic operators — crossover and mutation, and (3)
generate assembly code from the evolved abstract representation.

The working principle of the proposed COM infector evolution framework is
shown in Fig. 1. In the first step, it analyzes the source code of an infector and
maps it to the production rules — defined in the formal grammar — to generate its
chromosome. This step is initially done for 10 infectors (source code is obtained
from [1]); resulting in a population of 10 chromosomes. We then apply genetic
operators — crossover and mutation — to the population. Intuitively speaking, all
individuals will not be legitimate infectors after genetic operators are applied.
To test this hypothesis, we have a code generation unit which accepts these
chromosomes and produces assembly code for them. Finally, we present the
evolved malware to well-known COTS anti-virus products to check if the evolved
infectors can evade detection.

We have observed that the evolved infectors fall into one of the three cate-
gories: (1) COM infectors which have turned benign, (2) COM infectors which
are detected by anti-virus but as a different type than that of initial 10 infectors,
and (3) unknown variants of COM infectors which have successfully evaded the

Virus
Deriving Virus Testin
Databs G 7 g
atabase Mapping Virus —-1 e"\z%ze ol }—»‘ Popp‘grgf:;"c ‘ %fg‘po"t;g: ‘ Code from > Derived
Code to BNF BNF Viruses
BNF of
Viruses

Engine

Fig. 1. Architecture of COM infector evolution framework

modersmal
code 1) <Virus>:=<SF> <FO> <FW> O(<FC>) O(<SN>)
FNAME EQU 9EH. 2) <SF>::=<Routine>

ORa 1o 3) <FO>::=<Routine>
staR 4) <FW>z:=<Routine>

n 42 — _ search 5) <FC>::=<Routine>

mov . OFFSET cou_ e st 6) <SN>::=<Routine>
7) <Routine>::=N(<Statement>) | €

JoonE 8) <Statement>::=<DataMov> | <PrcsCntl>
R DONE o 9) <DataMov>::=<Move> | <Xchg>
e WO S Splor i lore | X
214 11) <Ist>::=<Reg8> | <Reg16> | <Segreg>
gt 12) <2nd>::=<Reg 8> | <Reg16> | <Segreg> | <Mem> | <imm>
. j o Wil 13) <Xchg>::="xchg" <Reg> *," <Reg>
mov dx. 100H 14) <Mem>::=<Idenfier> | “OFFSET" <ldentifier>
fou2th 15) <imm>::=<Digit> #(<Digit>) | <Hex_Digit> #(<Hex_Digit>) "H"
movan e | Filo Close 16) <Reg 8>::= "AH"| "AL"| "BL"| "BH"| "CL"| "CH"| "DH"| "DL"
214 17) <Reg16>::= "AX"| "B! "CX" 3

X'
£S5 "S8'| "FS"| "DS"| "GS"| *SI*

:m:‘:} ‘s‘i:c:,m =~ S:’z;c‘h jondigit> #(<Nondigit> | <Digit>)
et {
" 22) <Hex_digit>::=[0-9 a-f A-F]
oinen ~oow 23) <ProsCntl>::= “int 21H"
Fig. 2. Code of mini44 Fig. 3. BNF of COM infectors

detection mechanism. We manually execute the last category of the infectors on
Windows XP machine to check if the evolved infectors truly do the damage. Our
initial findings show that about 52% of evolved infectors have become benign;
41% are detected but with new names that are not included in the initial popu-
lation; while remaining 7% still do their destructive job but remain undetected.
The last category of infectors have achieved stealthiness in the true sense.

We now take an example of a simple mini44 malware (see Fig. 2) to explain
the evolution procedure. The common routines — Search First, Copy, Search Next
— are labeled in Fig. 2. Search First routine searches for the first COM file in
the current directory and it then opens it. After opening the file, the malware
writes its code into the victim file and the file is closed. The next victim COM
file is searched in Search Next function. Once our engine will read instruction
mov ah, 4EH of mini44, it will lookup for the production rules that match with
this instruction. The production rules are given in Fig. 3. The genotype of the
instruction mov ah, 4EH may consist of following production rules: 1-2-7-8-9-
10-11-12-16-15-22. In a similar fashion, the genotype of each insturction/routine
in COM infector is generated. When we want to produce a new individual, we
take abstract representation of two infectors and use crossover and mutation
operators to evolve new individuals. Finally, the code generator does the reverse
mapping to generate the source code of the evolved infector.

References

1. Virus Source Code Database, VSCDB, available at http://www.totallygeek.com/vscdb/.

2. S. Noreen, S. Murtaza, M.Z. Shafiq, M. Farooq, “Evolvable Malware”, Genetic and Evolutionary
Computation Conference (GECCO), ACM Press, 2009.

3. E. Filiol, “Metamorphism, Formal Grammars and Undecidable Code Mutation”, International
Journal of Computer Science, 2(1), pp. 70-75, 2007.

